一.白炭黑的制造
白炭黑的制备多采用两种方法,即煅烧法和沉淀法。
煅烧法制备的白炭黑又称为气相法白炭黑或干法白炭黑,它是以多卤化硅(SiClx)为原料在高温下热分解,进行气相反应制得。
干法白炭黑粒径极小,约为15~25nm,飞扬性极大。气相法白炭黑杂质少,补强性好,但制备复杂且成本高,主要用于硅橡胶中,所得产品为透明、半透明状,产品的物理机械性能和介电性能良好,耐水性优越。
沉淀法白炭黑普遍采用硅酸盐(通常为硅酸钠)与无机酸(通常使用硫酸)中和沉淀反应的方法来制取水合二氧化硅。
沉淀法白炭黑粒径较大,约为20~40nm,纯度较低,补强性比煅烧法差,胶料的介电性能特别是受潮后的介电性能较差,但价格便宜,工艺性能好。可单用于NR、SBR等通用橡胶中,也可与炭黑并用,以改善胶料的抗屈挠龟裂性,使裂口增长减慢。
二.白炭黑的结构
1.白炭黑的化学结构
白炭黑的95~99%的成分是SiO2,经X射线衍射证实,因白炭黑的制法不同,其结构有不同差别。气相法白炭黑内部结构几乎完全是排列紧密的硅酸三维网状结构,这种结构使粒子吸湿性小,表面吸附性强,补强作用强。而沉淀法白炭黑的结构内除了生成三维结构的硅酸外,还残存有较多的二维结构硅酸,致使结构疏松,有很多毛细管结构,很易吸湿,以致降低了它的补强活性。
2.白炭黑的结构
白炭黑的结构象炭黑,它的基本粒子呈球形。在生产过程中,这些基本粒子在高温状态下相互碰撞而形成了以化学键相连结的链枝状结构,这种结构称之为基本聚集体。链枝状结构彼此以氢键吸附又形成了次级聚集体结构,这种聚集体在加工混炼时易被破坏。
三.白炭黑的表面化学性质
1.表面基团
图3-24 白炭黑的表面模型
相邻羟基(在相邻的硅原子上),它对极性物质的吸附作用十分重要;隔离羟基,主要存在于脱除水分的白炭黑表面上。这种羟基的含量,气相法白炭黑比沉淀法的要多,在升高温度时不易脱除;双羟基,在一个硅原子上连有两个羟基。
白炭黑表面的基团具有一定的反应性,表面的反应包括:失水及水解反应、与酰氯反应、与活泼氢反应、形成氢键等。
2.白炭黑表面的吸附作用
白炭黑表面有很强的化学吸附活性,这与表面羟基有关。它可以和水以氢键形式结合,形成多分子吸附层。除此之外,它还可与许多有机小分子物质发生吸附作用。
多官能团的胺类或醇类的吸附性高于单官能团的,所以SiO2胶料中常用乙醇胺、乙二醇、三乙醇胺等多官能团化合物做活性剂。
3.热行为
将白炭黑加热就会放出水分,随温度升高,放出水分量增加。在150~200℃之前,放出水最多,200℃以后趋向平缓,有明显的转折点,见图3-25。折点以前主要是吸附水脱附,折点后是表面羟基缩水反应。
四.白炭黑对胶料工艺性能和硫化胶性能的影响
(一)白炭黑对胶料工艺性能的影响
1.胶料的混炼与分散
白炭黑由于比表面积很大,总趋向于二次聚集,加之在空气中极易吸收水分,致使羟基间易产生很强的氢键缔合,进一步提高了颗粒间的凝聚力,所以白炭黑的混炼与分散要比炭黑困难得多,而且在多量配合时,还容易生成凝胶,使胶料硬化,混炼时生热大。为获得良好的分散,就要求初始混炼时,保持尽可能高的剪切力,以便使白炭黑的这些聚集体粒子尽可能被破坏,而又不致使橡胶分子链发生过多的机械降解。为此,白炭黑应分批少量加入,以降低生热。适当提高混炼温度,有利于除掉一部分白炭黑表面吸附水分,降低粒子间的凝聚力,有助于白炭黑在胶料中的分散。
2.白炭黑补强硅橡胶混炼胶中的结构控制
白炭黑,特别是气相法白炭黑是硅橡胶最好的补强剂,但有一个使混炼胶硬化的问题,一般称为“结构化效应”。其结构化随胶料停放时间延长而增加,甚至严重到无法返炼、报废的程度。对此有两种解释,一种认为是硅橡胶端基与白炭黑表面羟基缩合;另一方面认为硅橡胶硅氧链节与白炭黑表面羟基形成氢键。
防止结构化有两个途径,其一是混炼时加入某些可以与白炭黑表面羟基发生反应的物质,如羟基硅油、二苯基硅二醇、硅氮烷等。当使用二苯基硅二醇时,混炼后应在160~200℃下处理0.5~1h。这样就可以防止白炭黑填充硅橡胶的结构化。另一途径是预先将白炭黑表面改性,先去掉部分表面羟基,从根本上消除结构化。
3.胶料的门尼粘度
白炭黑生成凝胶的能力与炭黑不相上下,因此在混炼白炭黑时,胶料的门尼粘度提高,以致于恶化了加工性能,故在含白炭黑的胶料配方中软化剂的选择和用量很重要。在IIR中往往加入石蜡烃类、环烷烃类和芳香烃类,用量视白炭黑用量多少及门尼粘度大小而异,一般可达15-30%。在NR中,以植物性软化剂如松香油、妥尔油等软化效果最好,合成的软化剂效果不大,矿物油的软化效果最低。
4.胶料的硫化速度
白炭黑粒子表面有大量的微孔,对硫化促进剂有较强的吸附作用,因此明显地迟延硫化。为了避免这种现象,一方面可适当地提高促进剂的用量;另一方面可采用活性剂,使活性剂优先吸附在白炭黑表面,这样就减少了它对促进剂的吸附。
活性剂一般是含氮或含氧的胺类、醇类、醇胺类低分子化合物。对NR来说胺类更适合,如二乙醇胺、三乙醇胺、丁二胺、六亚甲基四胺等。对SBR来说,醇类更适合,如己三醇、二甘醇、丙三醇、聚乙二醇等。活性剂用量要根据白炭黑用量、PH值和橡胶品种而定,一般用量为白炭黑的1~3%。
(二)白炭黑对硫化胶性能的影响
白炭黑对各种橡胶都有十分显著的补强作用,其中对硅橡胶的补强效果尤为突出。
白炭黑是一种补强效果仅次于相应炉法炭黑的白色补强剂。含一定量白炭黑的硫化胶与相应炉法炭黑(如HAF)补强的硫化胶相比,具有强度高、伸长率大,撕裂强度高、硬度高、绝缘性好等优点。通常将炭黑和白炭黑并用,可以获得较好的综合性能。
五.白炭黑的发展与应用方向
1.存在的问题
(1)加工性能;
(2)静电问题;
(3)价格问题
2.白炭黑的发展与应用方向
当前,白炭黑的发展向高分散性、精细化、造粒化和表面改性化等方面发展。
§3-7 有机补强剂
橡胶用有机补强剂包括合成树脂和天然树脂,但并非所有树脂都可用作补强剂。用作补强剂的树脂多为合成产品,如酚醛树脂、石油树脂及古马隆树脂。天然树脂有木质素等。许多树脂在胶料中同时兼有多种功能,如酚醛树脂可用作补强剂、增粘剂、纤维表面粘接剂、交联剂及加工助剂。石油树脂、高苯乙烯树脂也有多种功能。
一.酚醛树脂
一般橡胶专用补强酚醛树脂的聚合必须加入第三单体,并通过油或胶乳改性合成的酚醛树脂,使其具有高硬度、高补强、耐磨、耐热及加工安全和与橡胶相容性好的特征。通用橡胶补强酚醛树脂主要有间苯-甲醛二阶酚醛树脂、贾树油或妥尔油改性二阶酚醛树脂和胶乳改性酚醛树脂。
酚醛树脂的化学结构特征如图3-27所示。
图3-27 酚醛树脂的化学结构特征
R1,R2为不同的烷基;X,Y为非金属原子或烷基
线形酚醛树脂商业化的产品主要有:美国Occidental公司的Durez系列、Schenectady公司的SP系列、Summit公司的Duphene系列、Polymer Applications公司的PA53系列;德国BASF公司的Koreforte系列;法国CECA公司的R系列;我国常州常京化学有限公司的PFM系列。
酚醛树脂主要用于刚性和硬度要求很高的胶料中,尤其常用于胎面部位(胎冠和胎面基部)和胎圈部位(三角胶和耐磨胶料)。
二.石油树脂
石油树脂是石油裂解副产物的C5、C9馏分经催化聚合所制得的分子量油状或热塑性烃类树脂。按化学成分可分为芳香族石油树脂(C5树脂)、脂肪族石油树脂(C9树脂)、脂肪-芳香族树脂(C5/C9共聚树脂)、双环戊二烯树脂(DCPD树脂)以及这些树脂加氢后的加氢石油树脂。
C5石油树脂还可进一步分为通用型、调和型和无色透明型3种。DCPD树脂又有普通型、氢化型和浅色型3种之分。C9石油树脂,按原材料预处理及软化点分为PR1和PR2两种型号和多种规格。C5石油树脂软化点多在100℃左右,主要作为增粘剂用于NR和IR胶料中。C9石油树脂软化点为 90~100℃,主要用于油墨和涂料;软化点在120℃以上的C9石油树脂还可用作橡胶补强剂。C5/C9石油树脂为C5和C9两种成分兼有的树脂,软化点为 90~100℃ ,主要用于NR和SBR等橡胶和苯乙烯型热塑性弹性体。DCPD石油树脂软化点为 80~100℃,用于轮胎、涂料和油墨。氢化的DCPD树脂软化点可高达 100~140℃,主要用于各种苯乙烯型热塑性弹性体和塑料中。
三.苯乙烯树脂
常用的高苯乙烯树脂由苯乙烯和丁二烯共聚制得,苯乙烯含量在85%左右,有橡胶状、粒状和粉状。高苯乙烯树脂的性能与其苯乙烯含量有关。苯乙烯含量70%的软化温度为50~60℃;苯乙烯含量85~90%的软化温度为90~100℃。苯乙烯含量增加,胶料强度、刚度和硬度增加。高苯乙烯树脂与SBR的相容性很好,可用于NR、NBR、BR、CR,但不宜在不饱和度低的橡胶中使用。一般多用于各种鞋类部件、电缆胶料及胶辊。高苯乙烯树脂的耐冲击性能良好,能改善硫化胶力学性能和电性能,但伸长率下降。
四.木质素
木质素是造纸工业的废弃物,每年可从造纸污水中提取约3000万吨。木质素是一种主要由碳、氢、氧三元素组成的天然高分子化合物。是苯丙基单元通过—O—,—C—C—连接的芳香族化合物,它的分子结构复杂,分子量约为800~12000。木质素是由造纸废液经沉淀、干燥得到的物质,呈黄色或棕色,相对密度1.35~1.50,加酸可以使木质素沉淀出来,但一般的沉淀方法得到的木质素的粒径较大(2~5μm),即使再研磨,缩小粒径的效果也不大。木质素在温度升至70~110℃干燥时,出现软化和粘性增加现象,而聚集成较大颗粒,平均粒径达5μm以上。因此,直接将这种微米的木质素混入橡胶后,通常不能获得很好的补强效果,而只能起着填充的作用。
为了获得木质素对橡胶的补强效果,通常采取以下几种方法:
(1)共沉胶法
(2)射流法 借助射流装置为黑液酸化创造出剧烈湍动的环境,产生出细小的木质素初生粒子。其直径为100~300nm,补强NBR的拉伸强度可达20MPa。
(3)木质素羟甲基化(甲醛改性) 可以显著降低其分子附聚体的尺寸,提高与橡胶间的反应活性和在橡胶中的分散性,分散尺寸100~300nm。
§3-8无机填充剂
一.无机填料的特点
与炭黑相比,无机填料具有以下特点:
(1)来源丰富,主要来源于矿物,价格比较低;
(2)多为白色或浅色,可以制造彩色橡胶制品;
(3)制造能耗低,制造炭黑的能耗比无机填料高;
(4)某些无机填料具有特殊功能,如阻燃性、磁性等;
(5)对橡胶基本无补强性,或者补强性低。
对于橡胶工业,补强是非常重要的,否则许多非自补强橡胶便失去了使用价值。但多数无机填充剂的补强性能不如炭黑好,主要原因是无机填料具有亲水性,与橡胶的亲和性不好,因此降低无机填料的粒径和表面亲水性是关键。
二.无机填料表面改性的主要方法
(一)主要改性方法
填料的表面改性,一般有下述几种方法:
(1)亲水基团调节
(2)偶联剂或表面活性剂改性无机填料表面
(3)粒子表面接枝 聚合物接枝,引发活性点吸附单体聚合接枝。
(4)粒子表面离子交换 改变表面离子,自然改变了表面的性质。
(5)粒子表面聚合物胶囊化 用聚合物把填料包一层,但互相无化学作用。
这些方法中目前工业上广泛采用的是第二种即用偶联剂及表面活性剂改性无机填料。
(二)偶联剂或表面活性剂改性的主要作用
可以降低混炼胶粘度,改善加工流动性;改善填料的分散性和表面亲和性;提高橡胶的冲击弹性,降低生热等。
(三)偶联剂或表面活性剂改性填料的方法
这种表面改性原则上有两类方法:干法和湿法。相比之下,干法不易混匀,但很方便。
干法有两种混合方法。一是用液态改性剂或稀释的改性剂喷在一定温度下搅拌翻动的填料中混合;二是在聚合物混炼时将改性剂与填料一起加入机械混炼。
湿法也有两种混合方法。一是改性剂水溶液或乳液或改性剂直接加到填料水悬浮液中搅拌反应、除水、干燥;二是填料悬浮于改性剂的溶液中,让其吸附改性剂,再除去溶剂,干燥。
三.改性剂的分类及其改性效果
改性剂主要包括偶联剂和表面活性剂两类。偶联剂有硅烷类、钛酸酯类、铝酸酯类和叠氮类等;表面活性剂主要有脂肪酸和树脂酸类、官能化齐聚物类、其它还有阳离子、阴离子、非离子等类。
(一)偶联剂
1.硅烷类
硅烷类偶联剂是目前品种最多、用量较大的一类偶联剂,通式为X3—Si—R。
X为能水解的烷氧基,如甲氧基、乙氧基、氯等,3表示基团个数为3个。水解后生成硅醇基与填料表面羟基缩合而产生化学结合。
R为有机官能团,如巯基、氨基、乙烯基、甲基丙烯酰氧基、环氧基等,往往它们可以与橡胶在硫化时产生化学结合。选择什么基团的硅烷主要取决于橡胶中硫化体系和填充体系。
硅烷偶联剂用量为填充剂用量的1~3%。最好将偶联剂与填充剂预混合后加入胶料为好,使偶联剂在填充剂表面以均匀的薄层覆盖最为理想。
硅烷偶联剂中巯基硅烷在橡胶中使用较多,巯基硅烷的作用机理如下。
2.钛酸酯类
为了解决硅烷偶联剂对聚烯烃等热塑性塑料缺乏偶联效果的问题,70年代中期发展了钛酸酯类偶联剂。
钛酸酯偶联剂的品种很多,主要有以下五类:(a)单烷氧基型,(b)单烷氧基磷酸酯型,(c)单烷氧基焦磷酸酯型,(d)螯合型,(e)配位型。后四种钛酸酯偶联剂克服了单烷氧基钛酸酯偶联剂对水敏感的缺点。
钛酸酯偶联剂在橡胶中的应用,远不如在塑料树脂中应用成熟与广泛,但已显示出很大的特点。如在胶料中加入钛酸酯偶联剂后,由于白色填料表面被活化,增加了与橡胶分子的亲和力,使胶料的拉伸强度和撕裂强度得到改善。钛酸酯类具有一定的增塑作用,因此可增加填充剂用量,或减少增塑剂用量。
3.其他偶联剂
最近发展起来的有叠氮硅烷类、磷酸酯类、铝酸酯类。
(二)表面活性剂
表面活性剂大多为有机化合物,具有不对称的分子结构,由亲水和疏水两部分基团所组成,根据基团的特征和在水中离解状态可分为非离子型和离子型两种。常用的非离子型表面活性剂有:脂肪酸、树脂酸、烷醇类和长链胺等物质。常用的离子型表面活性剂有:阳离子型的季铵化合物、阴离子型的十二烷基苯磺酸钠等。
填料改性剂工业上获得广泛应用的主要有高级脂肪酸,例如硬脂酸,树脂酸,官能化的齐聚物如羧基化的液体聚丁二烯等。
四.典型的无机填充剂
(一)硅酸盐类
硅酸盐类填充剂品种很多,如陶土、滑石粉、硅灰石粉、云母粉、石棉、硅铝炭黑、海泡石等。
陶土或粘土是橡胶中用量最大的硅酸盐类填充剂,陶土性质因产地、制法不同而异。陶土生产方法有干法和湿法两种。按补强效果,陶土有软、硬之分,硬质陶土的补强性能优于软质陶土。
(二)碳酸盐类
碳酸盐类包括各类碳酸钙、轻质碳酸镁及白云石粉等。
碳酸钙是橡胶工业中用量最大的填充剂,它原料易得,价格合理,且可大量填充。碳酸钙随制法不同,有不同品种:如重质碳酸钙、轻质碳酸钙、超细(活性)碳酸钙。重质碳酸钙的粒径在10m左右,主要起填充增容作用。在一定用量范围内对橡胶物性影响不大,所以在胶料中可以大量填充。轻质碳酸钙粒径在0.5~6m之间,具有半补强性能。超细(活性)碳酸钙粒径在0.01~0.1m之间,具有较高的补强性能。
(三)硫酸盐类
橡胶用硫酸盐类填充剂的用量不及硅酸盐类和碳酸盐类多。硫酸钡和锌钡白是硫酸盐类最重要的填充剂。其它还有重晶石、硫酸钙(石膏)、硫酸铵等。
硫酸钡按制造方法分天然和沉淀两种。前者是由天然重晶石粉碎得到德,称为重晶石粉,这种产物粒径大,多在2~25m之间。后者是先由重晶石与碳加热还原生成硫化钡,再与硫酸作用生成沉降硫酸钡粉,这种产物粒径较小,约为0.2~5m。
沉淀硫酸钡可赋予橡胶和塑料制品对X射线的不透过性。主要用作橡胶的填充剂及着色剂,其耐酸性较好,多用于耐酸制品。
锌钡白又称立德粉,是硫酸钡和硫化锌的混合物。不溶于水,酸能溶解硫化锌而不溶解硫酸锌,对碱及硫化氢稳定。锌钡白主要用作着色剂,也可用作NR、合成橡胶及胶乳的填充剂,因相对密度大,一般不会作填充剂使用。
(四)金属氧化物及氢氧化物
橡胶用金属氧化物及氢氧化物这类填充剂中,多半兼有填充剂、活化剂、着色剂、阻燃剂、消泡剂乃至硫化剂等不同功能。有的甚至主要不是作为填充剂而是作为上述其它用途使用。这里不再详细叙述。
§3-9 短纤维补强
橡胶中使用长纤维做骨架材料的主要目的在于提高制品的力学强度和模量,限制其外力作用下的变形。长纤维与橡胶的复合,制造工艺是比较麻烦的。短纤维橡胶复合体的强度虽不及长纤维橡胶复合体,但具有保持橡胶制品形状的性能,以及可控制复合体的强度、弹性模量和纤维定向等;加工方面也不象长纤维复合体那样复杂,用开炼机、密炼机、挤出机等通用橡胶机械即可容易地加工成型。
一.短纤维的特点
(一)短纤维的种类
橡胶复合材料用的短纤维有下述的丝和麻等天然纤维;聚酯和芳纶纤维等合成纤维;碳纤维等无机纤维以及金属纤维。
1. 天然纤维:丝纤维、麻纤维、椰子纤维、木材纤维素纤维、木浆纤维、黄麻纤维等。
2. 合成纤维:丝聚酯纤维、维纶纤维、人造丝纤维、芳纶纤维等。
3. 无机纤维:碳纤维、玻璃纤维、碳化硅纤维、钛酸钾纤维、石墨纤维等。
4. 钢纤维
(二)短纤维的长度
短纤维的长度及与其相应的长径比对橡胶复合材料的性能影响很大。橡胶工业用的短纤维一般指纤维断面尺寸在1到几十微米间,长径比在250以下,通常在100~200间,长度在35mm以下,通常为3~5mm的各类纤维。
短纤维补强胶料一般用开炼机、密炼机、捏炼机等高剪切力橡胶加工机械进行混炼,因此象玻璃纤维、碳纤维等较脆的短纤维在加工过程中容易断裂、粉碎。短纤维混炼后的破碎程度随所用橡胶种类、配方、短纤维种类和直径而异。
聚酯纤维、维纶纤维、聚间苯二甲酰间苯二胺纤维混炼中不产生弯曲和破断,纤维分布与混炼前的短纤维相同。耐纶纤维和人造丝纤维混炼中产生弯曲和破断,玻璃纤维和碳纤维等混炼后破断成约150m的长度。此外,芳纶纤维混炼中产生原纤化和破断,有时粉碎成150m的长度。
二.短纤维增强的受力分析
短纤维增强橡胶是一种多相体系,其中橡胶为连续相,短纤维为分散相,两相间形成界面层。为了使该复合材料具有优良的性能,橡胶基质、纤维和界面层必须各自达到一定的性能要求。
纤维的作用是增强作用,赋予复合材料高强度、高模量。
橡胶的作用是基体,将个体的纤维按一定取向牢固地粘结成整体,将应力传递并分配到各个纤维上,保护纤维不受环境侵蚀和磨损,复合材料的最高使用温度往往取决于橡胶。
界面层是决定复合材料性能的重要因素,界面区起到传递应力、承受由于热收缩系数不同而产生的应力作用。若界面不牢,则它就变成了复合材料的薄弱环节,所以许多短纤维需要进行与长纤维类似的预处理,以增强界面结合。
在短纤维—橡胶复合材料中,当受到一个拉力作用时,橡胶将通过界面把应力传递到纤维上,沿纤维轴应力的分布不均匀。张应力在纤维末端较中间要小,中间最大。若纤维有足够的长度,即L/D等于或大于临界比值(L/D)c时,其中间张应力与长纤维受到的张应力相同,而在纤维的端部,纤维与橡胶的界面处剪切应力达到最大值,如图3-26。
图3-26 短纤维复合材料中张应力和剪切应力的分布
复合体中短纤维有个最低用量问题,只有达到该用量才有明显增强作用。对于塑料至少要加10%,主要是为了减少纤维末端的应力集中。一般短纤维补强复合材料的抗张强度仅为连续纤维复合材料的55%~86%,其模量为长纤维的90%~95%。
三.短纤维应用于橡胶中的某些实际问题
短纤维在橡胶中应用有几个问题需要十分注意,这就是分散、粘合、取向三个问题。
(一)短纤维的表面处理
短纤维橡胶复合体的纤维与橡胶的粘合性和相互作用对复合材料性能有很大影响。短纤维的表面一般呈惰性,与橡胶的粘合性差,为改善纤维与橡胶的粘合性和分散性,可考虑以下方法:
(1)短纤维表面进行处理;
(2)橡胶本身进行改性;
(3)添加相容剂(分散剂);
(4)对橡胶进行纤维接枝等。
实际加工中主要采用上述(1)、(3)的处理方法。在短纤维与橡胶复合中,采用纤维的表面处理剂或添加结合剂的方法可改善纤维与橡胶的粘合性。
(二)短纤维在橡胶中的取向
纤维的取向有三个方向,即与压延方向一致的轴向(L)、与L处于同一平面并垂直于压延方向(T)和垂直L-T平面的方向(Y),见图3-28。
图3-28 短纤维取向示意图
1.影响取向的因素 影响取向的最重要因素是复合材料制造成品工艺过程中最后工序流道的尺寸、形状、温度、压力和速度等工艺条件。
混炼工艺对取向有影响,混炼过程中如果能注意取向方向,对制取高度取向材料有利。
四.短纤维在橡胶制品中的应用
短纤维已成功地应用于胶管、三角带中,在轮胎、密封制品等各领域也在试用,起到了简化工艺、降低成本、提高经济效益的作用。
1.胶管中应用 主要用于制造耐中低压胶管,例如农田和园艺灌溉胶管、汽车中低压油管、一般水管等。特别是短纤维复合材料在不同的口型压出后便可以有不同取向。周向取向提高耐压能力,径向取向提高胶管的挺性,可在无芯棒条件下连续生产胶管。用这一技术还可以制造汽车用异型管,提高了生产效率。
2.胶带中应用 在三角带中压缩层中使用5-20份短纤维可明显提高三角带的横向刚度,具有较好的纵向挠性、较抵的弯曲模量,提高侧向摩擦力,提高传动效率,不易打滑。在表面层中使用可以增大胶带与槽轮的摩擦力,降低噪声,护胶带磨损。伸张层中使用可有效地提高横向刚度。
3.轮胎中应用 短纤维提高耐磨耗、耐刺穿、耐撕裂性的特点在工程胎胎面胶方面很有意义。在胎面胶中掺2.5份就明显地表现出其优越性,在胎体中、三角胶条中、胎圈包布胶中应用都有一定的好处。
4.短纤维补强技术在其它橡胶制品中的应用
对纤维素短纤维补强热塑性聚异戊二烯橡胶做鞋底材料及补强EPDM做汽车的一些部件,人们都作过研究。高度各向异性的短纤维橡胶复合材料能够在不降低弹性的情况下极好地限制溶胀,因此,短纤维橡胶复合材料耐油制品显示出优异的使用性能。也有人用碳纤维作补强剂制作高定伸应力的氟橡胶密封件。用短纤维补强的橡胶筛网具有缓冲性好、不易变形、耐磨和不堵塞的优点。短纤维橡胶复合材料还被用来制作中空圆形船坞和护舷。此外,短纤维橡胶复合材料也被应用于胶鞋、汽车仪表盘、矿工帽、板片等橡胶制品中。
五.短纤维橡胶复合材料的进展
短纤维复合材料的发展与高性能纤维的发展息息相关,增强材料是复合材料发展的先导。美国欧文思-科宁公司1997年宣布推出一种被命名为ADVANTEX(TM)的新型玻璃纤维,据称其既具有E-玻璃纤维的极佳电绝缘性能及较高的机械强度,又具有E-CR玻璃纤维的优良耐热性和耐腐蚀性能。俄罗斯生产的新一代芳纶类高性能有机纤维-APMOC纤维,其强度和模量比Kevlar49高出38%和20%。此外,空心碳纤维使聚合物基复合材料具有更好的冲击韧性,螺旋形碳纤维伸开后可比原长度长许多倍而不损失弹性。新发展起来的碳纳米管是极细微的碳结构,其强度比钢高100倍,但重量只有钢的1/6。据专家预测,碳纳米管可能成为未来理想的超级纤维。
另外,早在70年代,Getson及Adama等就报道了在自由基引发剂作用下,在有机硅氧烷上原位接枝纤维状有机聚合物。Keller报道了在硅橡胶中原位生成聚丙烯纤维的技术。80年代,山本新治、谷渊照夫等提出在天然橡胶中原位生成超细尼龙短纤维的技术。用这种技术生成的短纤维母炼胶的加工性能非常优异,在许多橡胶制品都可以使用。使用原位增强技术,可以克服传统短纤维橡胶复合材料加工过程中短纤维难分散、易断裂及纤维与橡胶粘合不好等问题,而且原位增强纤维的特性还使材料具有优异的物理性能。因此,原位增强技术是复合材料的一个发展方向。
§3-10 新型纳米增强技术
近年来,橡胶的纳米增强及纳米复合技术日益引起人们浓厚的兴趣。纳米材料已在许多科学领域引起了广泛的重视,成为材料科学研究的热点。纳米复合材料(nanocomposite)被定义为:补强剂(分散相)至少有一维尺寸小于100nm。与传统的复合材料相比,由于纳米粒子带来的纳米效应和纳米粒子与基体间强的界面相互作用,橡胶纳米复合材料具有优于相同组分常规聚合物复合材料的力学性能、热学性能,为制备高性能、多功能的新一代复合材料提供了可能。
作为纳米粉体,炭黑和白炭黑均具有纳米材料的大多数特性(如强吸附效应、自由基效应、电子隧道效应、不饱和价效应等)。根据炭黑和白炭黑的原生粒子以及它们在橡胶基质中的一次聚集体的尺寸,炭黑和白炭黑增强橡胶也属于纳米复合材料。也正因为如此,炭黑和白炭黑的高增强地位一直很难被取代。
一.插层复合法
1.原理和分类
插层复合法是制备聚合物/层状硅酸盐纳米复合材料的方法。首先将单体或聚合物插入经插层剂处理的层状硅酸盐片层之间,进而破坏硅酸盐的片层结构,使其剥离成厚为1nm、面积为100nm×100nm的层状硅酸盐基本单元,并均匀分散在聚合物基体中,以实现高分子与粘土类层状硅酸盐在纳米尺度上的复合。
按照复合过程,插层复合法可分为两大类。
(1)插层聚合(intercalation polymerization)。先将聚合物单体分散、插层进入层状硅酸盐片层中,然后原位聚合,利用聚合时放出的大量热量克服硅酸盐片层间的作用力,使其剥离,从而使硅酸盐片层与聚合物基体以纳米尺度相复合。
(2)聚合物插层(polymer intercalation)。将聚合物熔体或溶液与层状硅酸盐混合,利用力化学或热力学作用使层状硅酸盐剥离成纳米尺度的片层并均匀分散在聚合物基体中。
按照聚合反应类型的不同,插层聚合可以分为插层缩聚和插层加聚两种。聚合物插层又可分为聚合物溶液插层和聚合物熔融插层两种。
从结构的观点来看,聚合物/层状硅酸盐纳米复合材料可分为插层型(intercalated)和剥离型(exfolicated)纳米复合材料两种类型,其结构示意图见图3-28所示。
在插层型聚合物/层状硅酸盐纳米复合材料中,聚合物插层进入硅酸盐片层间,硅酸盐的片层间距虽有所扩大,但片层仍然具有一定的有序性。在剥离型纳米复合材料中,硅酸盐片层被聚合物打乱,无规分散在聚合物基体中的是一片一片的硅酸盐单元片层,此时硅酸盐片层与聚合物实现了纳米尺度上的均匀混合。由于高分子链在层间受限空间与层外自由空间有很大的差异,因此插层型聚合物/层状硅酸盐纳米复合材料可作为各向异性的功能材料,而剥离型聚合物/层状硅酸盐纳米复合材料具有很强的增强效应。
图3-28 聚合物/层状硅酸盐复合材料的结构示意图
(a)相分离型微米复合材料;(b)插层型纳米复合材料;(c)剥离型纳米复合材料
2.层状硅酸盐
具有层状结构的粘土矿物包括高岭土、滑石、膨润土、云母四大类。目前研究较多并具有实际应用前景的层状硅酸盐是2:1型粘土矿物,如钠蒙脱土、锂蒙脱土和海泡石等,其单元晶层结构如图3-29所示。
层状硅酸盐的层间有可交换性阳离子,如Na+、Ca2+、Mg2+等,它们可与无机金属离子、有机阳离子型表面活性剂等进行阳离子交换进入粘土层间。通过离子交换作用导致层状硅酸盐层间距增加。在适当的聚合条件下,单体在片层之间聚合可能使层间距进一步增大,甚至解离成单层,使粘土以1nm厚的片层均匀分散在聚合物基体中。
图3-29 2:1型页硅酸盐单元晶层的结构
(片层的厚度约为1nm,层间距也约为1nm,片层的直径范围约为30nm到几个微米之间)
3.插层剂的选用原则
插层剂的选择在制备聚合物/层状硅酸盐纳米复合材料的过程中是极其重要的一个环节,需要根据聚合物基体的种类以及复合工艺的具体条件来选择。
选择合适得插层剂需要重点考虑以下几个方面的因素:
(1)容易进入层状硅酸盐晶片间的纳米空间,并能显著增大粘土晶片间片层间距。
(2)插层剂分子应与聚合物单体或高分子链具有较强的物理或化学作用,以利于单体或聚合物插层反应的进行,并且可以增强粘土片层与聚合物两相间得界面粘结,有助于提高复合材料的性能。
(3)价廉易得,最好是现有得工业品。
目前在制备聚合物/层状硅酸盐纳米复合材料时常用的插层剂有烷基铵盐、季铵盐、吡啶类衍生物和其他阳离子型表面活性剂等。
层状硅酸盐/橡胶纳米复合材料的性能特点是:纳米分散相为形状比(面积/厚度比)非常大的片层填料,限制大分子变形的能力比球形增强剂更强(但弱于常规短纤维),因而橡胶/粘土纳米复合材料具有较高的模量、硬度、强度等高增强性和其他特殊性能如:优异的气体阻隔性能和耐小分子溶胀和透过性能,耐油、耐磨、减震、阻燃、耐热、耐化学腐蚀。适用于轮胎内胎、气密层、薄膜、胶管、胶辊、胶带、胶鞋等制品。
二、溶胶-凝胶法
用溶胶-凝胶法原位生成SiO2增强橡胶是橡胶的纳米增强领域最为活跃的课题,其原理是将二氧化硅的某些反应前体,如四乙氧基硅烷(TEOS)等引入橡胶基质中,然后通过水解和缩合直接生成均匀分散的纳米尺度的SiO2粒子,从而对橡胶产生优异的增强作用。这种复合技术通常是在硫化胶中完成,TEOS最终在硫化胶网络中形成了粒径为10~50nm的SiO2粒子,该粒子直径分布窄,分散非常均匀,性能明显超过了直接填充沉淀法SiO2增强的橡胶。用此技术已制备了SBR,BR,聚二甲基硅氧烷(PDMS),NBR,IIR等纳米复合材料。
橡胶/纳米SiO2复合材料中的分散相分散非常均匀,分散相的化学成分及结构、尺寸及其分布、表面特性等均可以控制,这不但为橡胶增强的分子设计提供了可能性,也为橡胶增强理论的研究提供了对象和素材。用该方法制备的纳米复合材料具有很高的拉伸强度和撕裂强度,优异的滞后生热和动/静态压缩性能,在最优化条件下的综合性能明显超过炭黑和白炭黑增强的橡胶纳米复合材料。限于技术的成熟性和产品的成本,该方法在橡胶工业中的广泛应用仍需进一步探讨。
三.原位聚合增强法
近十年来,不饱和羧酸盐/橡胶纳米复合材料的研究日益受到人们的关注。这是一种利用原位自由基聚合生成分散相的纳米复合材料。所谓“原位聚合”增强,是指在橡胶基体中“生成”增强剂,典型的方法如在橡胶中混入一些与基体橡胶有一定相容性的带有反应性官能团的单体物质,然后通过适当的条件使其“就地”聚合成微细分散的粒子,并在橡胶中形成网络结构,从而产生增强作用。不饱和羧酸金属盐增强橡胶就是“原位聚合”增强的典型例子。
1.不饱和羧酸盐的制备
不饱和羧酸盐的通式可用Mn+(RCOO-)n表示,其中M为价态为n的金属离子,R为不饱和烯烃。RCOO-可以是丙烯酸(AA)、甲基丙烯酸(MAA)和马来酸等的羧酸根离子,其中AA和MAA等α,β-不饱和羧酸最为常见。不饱和羧酸盐的制备一般是通过金属氧化物或氢氧化物与不饱和羧酸进行中和反应制得的。不饱和羧酸盐也可在橡胶中原位制得,即将金属氧化物和不饱和羧酸直接加入橡胶中,让中和反应在橡胶中原位发生。一般是在密炼机中将金属氧化物和橡胶混合均匀,再加入不饱和羧酸。
2.不饱和羧酸盐补强橡胶的特点
早期不饱和羧酸盐作为过氧化物的活性交联助剂,提高交联效率。80年代后,不饱和羧酸盐在橡胶中的应用得到重视,发现不饱和羧酸盐不仅可以改善硫化特性,而且直接用不饱和羧酸盐补强的橡胶也具有较高的硬度和强度,逐渐用于一些产品的制造,如用于高尔夫球芯。日本ZEON公司也开发了商品名为ZSC的复合材料,应用于汽车零部件、油田开采等领域。
与传统的炭黑补强相比,不饱和羧酸盐补强橡胶有以下特点:
(1)在相当宽的硬度范围内都有着很高的强度;
(2)随着不饱和羧酸盐用量的增加,胶料粘度变化不大,具有良好的加工性能;
(3)在高硬度时仍具有较高的伸长率;
(4)较高的弹性。
3.不饱和羧酸盐补强橡胶的机理
不饱和羧酸盐补强的橡胶中存在着大量的离子交联键并分散着纳米粒子,这种结构特点使硫化胶具有独特的性能。
离子交联键具有滑移特性,能最大限度地将应力松弛掉,并产生较大的变形,因此能够赋予硫化胶高强度、高的断裂伸长率。不饱和羧酸盐在橡胶基体中发生聚合反应,生成的聚盐以纳米粒子的形式存在在橡胶中,并有一部分不饱和羧酸盐接枝到橡胶大分子上,从而改善了橡胶与填料粒子间的相容性。
橡胶,特别是合成橡胶的增强一直是橡胶领域的重要研究课题。炭黑和白炭黑增强一直占据着主导地位,统治着橡胶工业。而原位纳米复合技术的高分散性、可设计性(物理化学结构、界面、形状、尺寸及其分布等)却是橡胶技术追求的理想境界。因此发展价格低廉的新型纳米增强剂,寻找更科学、适用的纳米复合技术,是橡胶纳米增强研究的一个重要方向。同时,利用纳米复合技术开发特种和功能性新型纳米复合材料,以填补炭黑和白炭黑增强弹性体的性能空缺。